skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "De Giorgi, Marta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Flexible metamaterials have been increasingly harnessed to create functionality through their tunable and unconventional response. Herein, chiral unit cells based on Archimedean spirals are employed to transform a linear displacement into twisting. First, the effect of geometry on such extension‐twisting coupling is investigated. This unravels a wide range of highly nonlinear behaviors that can be programmed. Additionally, it is demonstrated that by combining the spirals with polarizing films one can create mechanical pixels capable of modulating the transmission of light through deformation. Guided by experiments and numerical analyses, pixels are arranged in 2D arrays to realize black and white and color displays, which reveal distinct images at different states of deformation. As such, the study puts forward a methodology for the design of an emerging class of flexible devices that can convert nonlinear elastic deformation to tunable optical transmittance. 
    more » « less